These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels.
    Author: Gustafsson F, Andreasen D, Salomonsson M, Jensen BL, Holstein-Rathlou N.
    Journal: Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H582-90. PubMed ID: 11158955.
    Abstract:
    The aim of this study was to evaluate the role of voltage-operated Ca(2+) channels in the initiation and conduction of vasoconstrictor responses to local micropipette electrical stimulation of rat mesenteric arterioles (28 +/- 1 microm, n = 79) in vivo. Local and conducted (600 microm upstream from the pipette) vasoconstriction was not blocked by TTX (1 micromol/l, n = 5), nifedipine, or nimodipine (10 micromol/l, n = 9). Increasing the K(+) concentration of the superfusate to 75 mmol/l did not evoke vasoconstriction, but this depolarizing stimulus reversibly abolished vasoconstrictor responses to current stimulation (n = 7). Addition of the T-type Ca(2+) antagonist mibefradil (10 micromol/l, n = 6) to the superfusate reversibly blocked local and conducted vasoconstriction to current stimulation. With the use of RT-PCR techniques, it was demonstrated that rat mesenteric arterioles <40 microm do not express mRNA for L-type Ca(2+) channels (alpha(1C)-subunit), whereas mRNA coding for T-type subunits was found (alpha(1G)- and alpha(1H)-subunits). The data indicate that L-type Ca(2+) channels are absent from rat mesenteric arterioles (<40 microm). Rather, the vasoconstrictor responses appear to rely on other types of voltage-gated, dihydropyridine-insensitive Ca(2+) channels, possibly of the T-type.
    [Abstract] [Full Text] [Related] [New Search]