These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced Na-K pump but increased Na-K-2Cl cotransporter in aorta of streptozotocin-induced diabetic rat.
    Author: Michea L, Irribarra V, Goecke IA, Marusic ET.
    Journal: Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H851-8. PubMed ID: 11158986.
    Abstract:
    The activities of Na-K-ATPase and Na-K-2Cl cotransporter (NKCC1) were studied in the aorta, heart, and skeletal muscle of streptozotocin (STZ)-induced diabetic rats and control rats. In the aortic rings of STZ rats, the Na-K-ATPase-dependent (86)Rb/K uptake was reduced to 60.0 +/- 5.5% of the control value (P < 0.01). However, Na-K-ATPase activity in soleus skeletal muscle fibers of STZ rats and paired control rats was similar, showing that the reduction of Na-K-ATPase activity in aortas of STZ rats is tissue specific. To functionally distinguish the contributions of ouabain-resistant (alpha(1)) and ouabain-sensitive (alpha(2) and alpha(3)) isoforms to the Na-K-ATPase activity in aortic rings, we used either a high (10(-3) M) or a low (10(-5) M) ouabain concentration during (86)Rb/K uptake. We found that the reduction in total Na-K-ATPase activity resulted from a dramatic decrement in ouabain-sensitive mediated (86)Rb/K uptake (26.0 +/- 3.9% of control, P < 0.01). Western blot analysis of membrane fractions from aortas of STZ rats demonstrated a significant reduction in protein levels of alpha(1)- and alpha(2)-catalytic isoforms (alpha(1) = 71.3 +/- 9.8% of control values, P < 0.05; alpha(2) = 44.5 +/- 11.3% of control, P < 0.01). In contrast, aortic rings from the STZ rats demonstrated an increase in NKCC1 activity (172.5 +/- 9.5%, P < 0.01); however, in heart tissue no difference in NKCC1 activity was seen between control and diabetic animals. Transport studies of endothelium-denuded or intact aortic rings demonstrated that the endothelium stimulates both Na-K-ATPase and Na-K-2Cl dependent (86)Rb/K uptake. The endothelium-dependent stimulation of Na-K-ATPase and Na-K-2Cl was not hampered by diabetes. We conclude that abnormal vascular vessel tone and function, reported in STZ-induced diabetic rats, may be related to ion transport abnormalities caused by changes in Na-K-ATPase and Na-K-2Cl activities.
    [Abstract] [Full Text] [Related] [New Search]