These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.
    Author: Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ, Hagenbuch B.
    Journal: Gastroenterology; 2001 Feb; 120(2):525-33. PubMed ID: 11159893.
    Abstract:
    BACKGROUND & AIMS: Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8. METHODS: Tissue distribution and hepatocellular localization of OATP-B were analyzed by Northern blotting and immunofluorescence, respectively. Transport of 16 substrates was measured for each individual human OATP in complementary RNA-injected Xenopus laevis oocytes. RESULTS: Expression of OATP-B was most abundant in human liver, where it is localized at the basolateral membrane of hepatocytes. OATP-B, OATP-C, and OATP8 mediated high-affinity uptake of bromosulphophthalein (K(m), approximately 0.7, 0.3, and 0.4 micromol/L, respectively). OATP-B also transported estrone-3-sulfate but not bile salts. Although OATP-A, OATP-C, and OATP8 exhibit broad overlapping substrate specificities, OATP8 was unique in transporting digoxin and exhibited especially high transport activities for the anionic cyclic peptides [D-penicillamine(2,5)]enkephalin (DPDPE; opioid-receptor agonist) and BQ-123 (endothelin-receptor antagonist). CONCLUSIONS: OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes. OATP-B, OATP-C, and OATP8 account for the major part of sodium-independent bile salt, organic anion, and drug clearance of human liver.
    [Abstract] [Full Text] [Related] [New Search]