These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of bupivacaine and a novel local anesthetic, IQB-9302, on human cardiac K+ channels. Author: González T, Longobardo M, Caballero R, Delpón E, Tamargo J, Valenzuela C. Journal: J Pharmacol Exp Ther; 2001 Feb; 296(2):573-83. PubMed ID: 11160646. Abstract: We have studied and compared the effects of bupivacaine with those induced by a new local anesthetic, IQB-9302, on human cardiac K+ channels hKv1.5, Kv2.1, Kv4.3, and HERG. Both drugs have a close chemical structure, only differing in their N-substituent (n-butyl and cyclopropylmethyl, for bupivacaine and IQB-9302, respectively). Both drugs blocked Kv2.1, Kv4.3, and HERG channels similarly. Bupivacaine inhibited these channels by 48.6 +/- 3.4, 45.4 +/- 12.4, and 43.1 +/- 9.1%, respectively, and IQB-9302 by 48.1 +/- 3.3, 36.1 +/- 3.7, and 50.3 +/- 6.6%, respectively. However, bupivacaine was 2.5 times more potent than IQB-9302 to block hKv1.5 channels (EC(50) = 8.9 +/- 1.4 versus 21.5 +/- 4.7 microM). Both drugs induced a time- and voltage-dependent block of hKv1.5 and Kv2.1 channels. Block of Kv4.3 channels induced by either drug was time- and voltage-dependent at membrane potentials coinciding with the activation of the channels. IQB-9302 produced an instantaneous block of Kv4.3 and hKv1.5 channels at the beginning of the depolarizing pulse that can be interpreted as a drug interaction with a nonconducting state. Bupivacaine and IQB-9302 induced a similar degree of block of HERG channels and induced a steep voltage-dependent decrease of the relative current. These results suggest that 1) bupivacaine and IQB-9302 block the open state of hKv1.5, Kv2.1, Kv4.3, and HERG channels; and 2) small differences at the N-substituent of these drugs do not affect the drug-induced block of Kv2.1, Kv4.3, or HERG, but specifically modify block of hKv1.5 channels.[Abstract] [Full Text] [Related] [New Search]