These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential.
    Author: Rossato M, Di Virgilio F, Rizzuto R, Galeazzi C, Foresta C.
    Journal: Mol Hum Reprod; 2001 Feb; 7(2):119-28. PubMed ID: 11160837.
    Abstract:
    We evaluated the presence and role of internal calcium stores in human uncapacitated spermatozoa by determining the effects of two inhibitors of Ca2+ ATPase of the sarco-endoplasmic reticulum (SERCA-ATPase), thapsigargin and cyclopiazonic acid (CPA) on intracellular calcium concentrations, [Ca2+](i), plasma membrane potential and acrosome reaction. Using a fluorescent conjugate of thapsigargin, we localized internal Ca2+ stores on the acrosome, post-acrosomal region and sperm midpiece. SERCA-ATPase inhibitors induced a rise in [Ca2+](i) both in Ca2+ and Ca2+-free media but under these latter conditions it was reduced with a progressive decline to baseline values; the re-addition of Ca2+-stimulated a rise in [Ca2+](i). This demonstrated that internal Ca2+ store depletion can evoke the opening of Ca2+-channels on sperm plasma membrane, thus showing the existence of "capacitative" Ca2+ entry into these specialized cells. The addition of thapsigargin to human spematozoa induced a dose-dependent increase in acrosome reaction percentages, but only when Ca2+ was present in the external medium. Plasma membrane potential monitoring showed that these inhibitors induced a depolarization dependent on Ca2+ influx from external medium and that this was preceded by a transient hyperpolarization caused by activation of Ca2+-dependent K+ channels. When K+-dependent plasma membrane hyperpolarization was inhibited, the thapsigargin- and CPA-stimulated rise in [Ca2+](i) plasma membrane depolarization and acrosome reaction were abolished. In conclusion, the present study demonstrates that human spermatozoa possess internal Ca2+ stores and that the capacitative Ca2+ entry pathway present in these cells regulates important biological processes that are fundamental for the acrosome reaction.
    [Abstract] [Full Text] [Related] [New Search]