These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase. Author: Liu H, Reynolds KA. Journal: Metab Eng; 2001 Jan; 3(1):40-8. PubMed ID: 11162231. Abstract: Crotonyl-CoA reductase (CCR), which catalyzes the reduction of crotonyl-CoA to butyryl-CoA, is common to most streptomycetes and appears to be inducible by either lysine or its catabolites in Streptomyces cinnamonensis grown in chemically defined medium. A major role of CCR in providing butyryl-CoA from acetate for monensin A biosynthesis has been demonstrated by the observation of a change in the monensin A/monensin B ratio in the parent C730.1 strain (50/50) and a ccr (encoding CCR) disruptant (12:88) of S. cinnamonensis in a complex medium. Both strains produce significantly higher monensin A/monensin B ratios in a chemically defined medium containing valine as a major carbon source than in either complex medium or chemically defined medium containing alternate amino acids. This observation demonstrates that under certain growth conditions valine catabolism may have a more significant role than CCR in providing butyryl-CoA. Such a process most likely involves an isomerization of the valine catabolite isobutyryl-CoA, catalyzed by the coenzyme B(12)-dependent isobutyryl-CoA mutase. Monensin labeling experiments using dual (13)C-labeled acetate in the ccr-disrupted S. cinnamonensis indicate the presence of an additional coenzyme B(12)-dependent mutase linking branched and straight-chain C(4) compounds by a new pathway.[Abstract] [Full Text] [Related] [New Search]