These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: VEGF can act as vascular permeability factor in the hepatic sinusoids through upregulation of porosity of endothelial cells.
    Author: Funyu J, Mochida S, Inao M, Matsui A, Fujiwara K.
    Journal: Biochem Biophys Res Commun; 2001 Jan 19; 280(2):481-5. PubMed ID: 11162543.
    Abstract:
    VEGF is shown to be a vascular permeability factor (VPF) as well as a growth stimulatory factor on endothelial cells. In the hepatic sinusoids, endothelial cells express flt-1 and KDR/flk-1, receptors for VEGF. These cells, in primary culture, proliferate in response to VEGF stimulation. However, the role of VEGF as VPF in the hepatic sinusoids is to be elucidated. The effect of VEGF on the porosity of sinusoidal endothelial cells was studied. Sinusoidal endothelial cells were isolated from rats and cultured in DMEM containing 10% FCS on plastic dishes coated with type I collagen for 16 and 48 h for morphological examination and cell-number measurement, respectively. When the cells were cultured without VEGF addition, their number was decreased at 48 h compared to that at 16 h. However, the number was unchanged in the cells cultured with VEGF at 10 ng/mL and increased with addition of VEGF at 100 ng/mL. Scanning electron microscopic examination revealed that sieve-plate appearance of the cells was impaired in culture with no VEGF addition, but the appearance was maintained in culture with VEGF at 10 ng/mL or more. The cells cultured with VEGF at 100 ng/mL showed significantly increased number and size of pores compared to the cells cultured with VEGF at 10 ng/mL, suggesting that sinusoidal endothelial cells proliferating in response to VEGF may increase their porosity. It is concluded that VEGF can act as VPF in the hepatic sinusoids through regulation of endothelial cell porosity.
    [Abstract] [Full Text] [Related] [New Search]