These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of slow wave and REM sleep on thyropharyngeus and stylopharyngeus activity during induced central apneas. Author: Feroah TR, Forster HV, Pan L, Wenninger J, Martino P, Rice T. Journal: Respir Physiol; 2001 Jan; 124(2):129-40. PubMed ID: 11164204. Abstract: The pharyngeal constrictors have been hypothesized to play an important role in the regulation of upper airway (UAW) patency in patients with sleep apnea. However, little research has focused on the activation and control of muscles that determine the lateral and posterior wall of the retropalatal airway dimensions. Our aim was to investigate the effects of slow wave sleep (SWS) and rapid eye movement (REM) sleep on the activation of pharyngeal constrictor (thyropharyngeus; TP) and dilator (stylopharyngeus; SP) muscles during eupneic breathing and induced central apneas. In nine goats, we found that eupneic TP and SP activity progressively decreased from awake to SWS (57 and 56%, respectively; P<0.01) and further in REM (25.6 and 19.9%, respectively; P<0.01). In contrast, diaphragm activity decreased equally during SWS and REM (89.3 and 87.7%, respectively; P<0.01) compared to awake. Following induced apneas while SP activity was eliminated in every state, maximal TP activity was highest in awake state (318.6% of control; P<0.02), less in SWS (157.6%; P<0.02), and nearly absent in REM (117.3%; P>0.02). During the recovery from an induced apnea when diaphragm activity was at 95% of its' control, awake TP activity remained significantly elevated and SP reduced (P>0.02) while TP activity during SWS was elevated and SP had returned to control level. During REM, TP and SP activity were not different from their reduced controls (P>0.02). The data supports our hypotheses that SWS and REM sleep causes a reduction in the eupneic TP and SP activity, as well as a reduction in TP response to induced apneas. However, the relative imbalance in TP vs SP activity during the recovery from an apnea (awake and SWS) suggest that an imbalance of active neuromuscular forces may contribute to upper airway narrowing in mixed apneas, but not in central apnea during sleep.[Abstract] [Full Text] [Related] [New Search]