These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Age-dependent changes in sleep EEG topography.
    Author: Landolt HP, Borbély AA.
    Journal: Clin Neurophysiol; 2001 Feb; 112(2):369-77. PubMed ID: 11165543.
    Abstract:
    OBJECTIVE: To assess age-related topographic changes in the sleep electroencephalogram (EEG). METHODS: The sleep EEG records of young (mean age, 22.3 years) and middle-aged (mean age, 62.0 years) healthy men were compared. The EEG was obtained from 3 bipolar derivations (frontal-central (FC), central-parietal (CP), and parietal-occipital (PO)) along the antero-posterior axis. RESULTS: The total sleep time, sleep efficiency, stage 2 and slow wave sleep (SWS) were lower in the middle-aged group, while sleep latency, stage 1 and wakefulness after sleep onset were higher. Spectral analysis documented the age-related reduction of EEG power in non-REM sleep (0.25-14 Hz), and REM sleep (0.75-10 Hz). However, the reduction was not uniform over the 3 derivations, but was most pronounced in the anterior derivation (FC) in the theta (both sleep states) and high-alpha/low-sigma bands (non-REM sleep). CONCLUSIONS: These changes can be interpreted as age-related shifts of power from the anterior (FC) towards the middle derivation (CP). Aging not only reduces power in the sleep EEG, but causes frequency-specific changes in the brain topography. The results are consistent with the notion of sleep as a local process.
    [Abstract] [Full Text] [Related] [New Search]