These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combination of continuous subcutaneous infusion of insulin and octreotide in Type 1 diabetic patients.
    Author: Bruttomesso D, Fongher C, Silvestri B, Barberio S, Marescotti MC, Iori E, Valerio A, Crazzolara D, Pianta A, Tiengo A, Del Prato S.
    Journal: Diabetes Res Clin Pract; 2001 Feb; 51(2):97-105. PubMed ID: 11165689.
    Abstract:
    The effect of 7 day continuous subcutaneous infusion of octreotide (200 microg day(-1)) was evaluated in seven insulin-pump treated Type 1 diabetic patients (age 43+/-1.5 year; BMI 25.1+/-0.7 kg m(-2); HbA(1c) 7.4+/-0.3%). A 24-h metabolic and hormonal profile, and a euglycaemic hyperinsulinaemic clamp (0.25, 0.5, 1.0 mg kg(-1) min(-1)), with [3H]glucose infusion and indirect calorimetry, were performed before and after a 7-day octreotide infusion. Mean 24-h plasma glucose was similar before and after octreotide (9.7+/-0.8 vs. 9.1+/-1.0 mmol l(-1)) but insulin requirement dropped by 45% (49+/-4 vs. 27+/-2 U day(-1); P<0.01). Both 24-h plasma hGH and glucagon were suppressed by octreotide (1.85+/-0.35 vs. 0.52+/-0.04 microg l(-1), and 117+/-23 vs. 102+/-14 ng l(-1), respectively). Glucose utilisation increased after octreotide (insulin 0.5 mU kg(-1) min(-1) clamp 3.09+/-0.23 vs. 4.19+/-0.19 mg kg(-1) min(-1); 1 mU kg(-1) min(-1) clamp 5.64+/-0.61 vs. 7.93+/-0.57 mg kg(-1) min(-1); both P<0.05) and endogenous glucose production was similarly suppressed. Glucose oxidation was not affected by octreotide, while the improvement in glucose storage (insulin 1.0 mU kg(-1) min(-1) clamp 3.89+/-0.60 vs. 5.64+/-0.67 mg kg(-1) min(-1), P<0.05) entirely accounted for the increase in glucose disposal. Endogenous glucose production was more effectively suppressed at the two lower insulin infusion rates (P>0.05). Energy expenditure declined after octreotide. Continuous subcutaneous octreotide infusion suppresses counterregulatory hormones, increases insulin-mediated glucose metabolism by enhancing glucose storage, and reduces energy expenditure. These results support a role for counterregulatory hormones in the genesis of insulin resistance and the catabolic state of Type 1 diabetes.
    [Abstract] [Full Text] [Related] [New Search]