These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Leg uptake of calcitonin gene-related peptide during exercise in spinal cord injured humans. Author: Kjaer M, Mohr T, Dela F, Secher N, Galbo H, Olesen H, Sørensen F, Schifter S. Journal: Clin Physiol; 2001 Jan; 21(1):32-8. PubMed ID: 11168294. Abstract: Exercise-induced increases in cardiac output (CO) and oxygen uptake (VO2) are tightly coupled, as also in absence of central motor activity and neural feedback from skeletal muscle. Neuromodulators of vascular tone and cardiac function - such as calcitonin gene related peptide (CGRP) - may be of importance. Spinal cord injured individuals (six tetraplegic and four paraplegic) performed electrically induced cycling (FES) with their paralyzed lower limbs for 29 +/- 2 min to fatigue. Voluntary cycling performed both at VO2 similar to FES and at maximal exercise in six healthy subjects served as control. In healthy subjects, CGRP in plasma increased only during maximal exercise (33.8 +/- 3.1 pmol l(-1) (rest) to 39.5 +/- 4.3 (14%, P<0.05)) with a mean extraction over the working leg of 10% (P<0.05). Spinal cord injured individuals had more pronounced increase in plasma CGRP (33.2 +/- 3.8 to 46.9 +/- 3.6 pmol l-1, P<0.05), and paraplegic and tetraplegic individuals increased in average by 23% and 52%, respectively, with a 10% leg extraction in both groups (P<0.05). The exercise induced increase in leg blood flow was 10-12 fold in both spinal cord injured and controls at similar VO2 (P<0.05), whereas CO increased more in the controls than in spinal man. Heart rate (HR) increased more in paraplegic subjects (67 +/- 7 to 132 +/- 15 bpm) compared with controls and tetraplegics (P<0.05). Mean arterial pressure (MAP) was unchanged during submaximal exercise and increased during maximal exercise in healthy subjects, but decreased during the last 15 min of exercise in the tetraplegics. It is concluded that plasma CGRP increases during exercise, and that it is taken up by contracting skeletal muscle. The study did not allow for a demonstration of the origin of the CGRP, but its release does not require activation of motor centres. Finally, the more marked increase in plasma CGRP and the decrease in blood pressure during exercise in tetraplegic humans may indicate a role of CGRP in regulation of vascular tone during exercise.[Abstract] [Full Text] [Related] [New Search]