These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes.
    Author: Liu F, Lewis RN, Hodges RS, McElhaney RN.
    Journal: Biochemistry; 2001 Jan 23; 40(3):760-8. PubMed ID: 11170393.
    Abstract:
    We have investigated the effects of the model alpha-helical transmembrane peptide Ac-K(2)L(24)K(2)-amide (L(24)) on the thermotropic phase behavior of aqueous dispersions of 1,2-dielaidoylphosphatidylethanolamine (DEPE) to understand better the interactions between lipid bilayers and the membrane-spanning segments of integral membrane proteins. We studied in particular the effect of L(24) and three derivatives thereof on the liquid-crystalline lamellar (L(alpha))-reversed hexagonal (H(II)) phase transition of DEPE model membranes by differential scanning calorimetry and (31)P nuclear magnetic resonance spectroscopy. We found that the incorporation of L(24) progressively decreases the temperature, enthalpy, and cooperativity of the L(alpha)-H(II) phase transition, as well as induces the formation of an inverted cubic phase, indicating that this transmembrane peptide promotes the formation of inverted nonlamellar phases, despite the fact that the hydrophobic length of this peptide exceeds the hydrophobic thickness of the host lipid bilayer. These characteristic effects are not altered by truncation of the side chains of the terminal lysine residues or by replacing each of the leucine residues at the end of the polyleucine core of L(24) with a tryptophan residue. Thus, the characteristic effects of these transmembrane peptides on DEPE thermotropic phase behavior are independent of their detailed chemical structure. Importantly, significantly shortening the polyleucine core of L(24) results in a smaller decrease in the L(alpha)-H(II) phase transition temperature of the DEPE matrix into which it is incorporated, and reducing the thickness of the host phosphatidylethanolamine bilayer results in a larger reduction in the L(alpha)-H(II) phase transition temperature. These results are not those predicted by hydrophobic mismatch considerations or reported in previous studies of other transmembrane alpha-helical peptides containing a core of an alternating sequence of leucine and alanine residues. We thus conclude that the hydrophobicity and conformational flexibility of transmembrane peptides can affect their propensity to induce the formation of inverted nonlamellar phases by mechanisms not primarily dependent on lipid-peptide hydrophobic mismatch.
    [Abstract] [Full Text] [Related] [New Search]