These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of blood estrogen level on cortical activation patterns during cognitive activation as measured by functional MRI.
    Author: Dietrich T, Krings T, Neulen J, Willmes K, Erberich S, Thron A, Sturm W.
    Journal: Neuroimage; 2001 Mar; 13(3):425-32. PubMed ID: 11170808.
    Abstract:
    Modulation of the blood estrogen level as it occurs during the menstrual cycle has a strong influence on both neuropsychological and neurophysiological parameters. One of currently preferred hypotheses is that the menstrual cycle hormones modulate functional hemispheric lateralization. We examined six male and six female subjects by functional magnetic resonance imaging (fMRI) to image cortical activation patterns associated with cognitive and motor activation to determine whether these changes during the menstrual cycle can be visualized. Female subjects, who did not use oral contraceptives, were scanned twice, once during the menses and once on the 11/12 day of the menstrual cycle. A word-stem-completion task, a mental rotation task and a simple motor task were performed by all subjects. Our data provide evidence that the menstrual cycle hormones influence the overall level of cerebral hemodynamics to a much stronger degree than they influence the activation pattern itself. No differences were seen between male subjects and female subjects during the low estrogen phase. During both neuropsychological tasks blood estrogen level had a profound effect on the size but not on the lateralization or the localization of cortical activation patterns. The female brain under estrogen showed a marked increase in perfusion in cortical areas involved in both cognitive tasks, whereas the hemodynamic effects during the motor tasks were less pronounced. This might be due to differences in neuronal or endothelian receptor concentration, differences in synaptic function, or, most likely, changes in the cerebrovascular anatomy in different cortical regions.
    [Abstract] [Full Text] [Related] [New Search]