These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methylseleninic acid, a potent growth inhibitor of synchronized mouse mammary epithelial tumor cells in vitro. Author: Sinha R, Unni E, Ganther HE, Medina D. Journal: Biochem Pharmacol; 2001 Feb 01; 61(3):311-7. PubMed ID: 11172735. Abstract: Selenium compounds have been shown to be effective chemopreventive agents in several animal models and in cultured cells in vitro. It has been proposed that compounds able to generate monomethyl Se have an increased potential to inhibit cell growth. To test this hypothesis, methylseleninic acid (MSeA) and other compounds that could generate methylselenol rapidly were compared with Se compounds that do not generate monomethyl Se, using a well-characterized synchronized TM6 mouse mammary epithelial tumor model in vitro. MSeA at a low micromolar concentration inhibited TM6 growth after 10- to 15-min treatment times. Cells resumed growth after 24 hr but remained sensitive to the fresh addition of monomethyl Se-generators. Dimethyl selenide (DMSe), a putative metabolite of methylselenol, was inactive. Cells treated with 5 microM MSeA were arrested in G1. The effects of 5 microM MSeA on gene expression were evaluated using the Atlas mouse cDNA expression array. A 10-min exposure with MSeA caused a 2- to 3-fold change in the expression of three genes: laminin receptor 1 (decreased), integrin beta (decreased), and Egr-1 (increased). The results provide experimental support for the hypothesis that monomethylated forms of Se are the critical effector molecules in Se-mediated growth inhibition in vitro.[Abstract] [Full Text] [Related] [New Search]