These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo.
    Author: Sabol KE, Roach JT, Broom SL, Ferreira C, Preau MM.
    Journal: Brain Res; 2001 Feb 16; 892(1):122-9. PubMed ID: 11172757.
    Abstract:
    Rats were treated with a high-dose methamphetamine (METH) regimen (40 mg/kg/injection, four times at 2-h intervals) or a saline regimen (four injections at 2-h intervals). Temperature related measures taken during the high-dose METH treatment were maximum core temperature and minimum chamber temperature. Fourteen rats (METH N=7; Saline N=7) were implanted with in-vivo dialysis probes 4-7 weeks post-regimen (average=6 weeks). The next day, they received a challenge dose of METH (4.0 mg/kg) and dopamine release was measured. Results showed a significant decrease in challenge-induced dopamine release in rats previously treated with the high-dose METH regimen. These findings demonstrate a functional deficit in the dopamine system 6 weeks after high-dose METH treatment. Temperature-related measures taken during the high-dose regimen were not correlated with METH-induced dopamine release 6 weeks later. An additional group of rats were sacrificed 6 weeks after the high-dose regimen (METH N=12; Saline N=10), and their brains was analyzed for dopamine and serotonin concentrations. Tissue concentrations of dopamine were significantly depleted in striatum and nucleus accumbens/olfactory tubercle, but not septum, hypothalamus, or ventral mid-brain 6 weeks after the high-dose regimen. Tissue concentrations of serotonin were also significantly depleted in striatum, nucleus accumbens/olfactory tubercle, hippocampus, somatosensory cortex, but not septum, hypothalamus or ventral mid-brain. Significant correlations between the temperature-related measures and post-mortem neurotransmitter tissue concentrations were region and transmitter dependent.
    [Abstract] [Full Text] [Related] [New Search]