These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mitochondria-dependent apoptosis and cellular pH regulation.
    Author: Matsuyama S, Reed JC.
    Journal: Cell Death Differ; 2000 Dec; 7(12):1155-65. PubMed ID: 11175252.
    Abstract:
    Mitochondria play a critical role in apoptosis induction in response to myriad stimuli. These organelles release proteins into the cytosol which trigger caspase activation or perform other functions relevant to apoptosis, including cytochrome c (cyt-c), caspases, AIF, and SMAC (Diablo). The mechanisms by which these proteins escape from mitochondria remain enigmatic. Moreover, it is unclear whether release of these proteins versus disturbances in core mitochondrial functions represents the cell death commitment mechanism. In this regard, suppression of apoptosis using broad-spectrum caspase inhibitory compounds has been reported in many circumstances to prevent the morphological and biochemical manifestations of apoptosis, and yet not protect cells from death and not preserve clonigenic survival. Thus, while mitochondrial damage can be coupled to caspase activation pathways, cell death commitment often occurs upstream of caspase activation when mitochondria-dependent cell death pathways are invoked. Here, we review evidence implicating dysregulation of cellular pH as a component of the cell death mechanism involving mitochondria. Cell Death and Differentiation (2000) 7, 1155 - 1165
    [Abstract] [Full Text] [Related] [New Search]