These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AE anion exchangers in atrial tumor cells. Author: Papageorgiou P, Shmukler BE, Stuart-Tilley AK, Jiang L, Alper SL. Journal: Am J Physiol Heart Circ Physiol; 2001 Mar; 280(3):H937-45. PubMed ID: 11179033. Abstract: Intracellular pH homeostasis and intracellular Cl(-) concentration in cardiac myocytes are regulated by anion exchange mechanisms. In physiological extracellular Cl(-) concentrations, Cl(-)/HCO(3)(-) exchange promotes intracellular acidification and Cl(-) loading sensitive to inhibition by stilbene disulfonates. We investigated the expression of AE anion exchangers in the AT-1 mouse atrial tumor cell line. Cultured AT-1 cells exhibited a substantial basal Na(+)-independent Cl(-)/HCO(3)(-) (but not Cl(-)/OH(-)) exchange activity that was inhibited by DIDS but not by dibenzamidostilbene disulfonic acid (DBDS). AT-1 cell Cl(-)/HCO(3)(-) activity was stimulated two- to threefold by extracellular ATP and ANG II. AE mRNAs detected by RT-PCR in AT-1 cells included brain AE3 (bAE3), cardiac AE3 (cAE3), AE2a, AE2b, AE2c1, AE2c2, and erythroid AE1 (eAE1), but not kidney AE1 (kAE1). Cultured AT-1 cells expressed AE2, cAE3, and bAE3 polypeptides, which were detected by immunoblot and immunocytochemistry. An AE1-like epitope was detected by immunocytochemistry but not by immunoblot. Both bAE3 and cAE3 were present in intact AT-1 tumors. Cultured AT-1 cells provide a useful system for the study of mediators and regulators of Cl(-)/HCO(3)(-) exchange activity in an atrial cell type.[Abstract] [Full Text] [Related] [New Search]