These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduced brain serotonin activity disrupts prepulse inhibition of the acoustic startle reflex. Effects of 5,7-dihydroxytryptamine and p-chlorophenylalanine.
    Author: Fletcher PJ, Selhi ZF, Azampanah A, Sills TL.
    Journal: Neuropsychopharmacology; 2001 Apr; 24(4):399-409. PubMed ID: 11182535.
    Abstract:
    These experiments examined the impact of extensive depletions of forebrain 5-hydroxytryptamine (5-HT; serotonin) levels on prepulse inhibition (PPI) of the acoustic startle reflex in rats. In Experiment 1, injection of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the dorsal and median raphe nuclei disrupted PPI. This deficit was observed beginning 2 days after lesioning and was still apparent 8 weeks later. Basal startle reactivity was not altered. The 5-HT(1A) receptor agonist 8-OH-DPAT (0.1 mg/kg) and the dopamine receptor agonist apomorphine (1mg/kg) also disrupted PPI; the effect of 8-OH-DPAT, but not apomorphine, was potentiated in 5-HT-depleted rats. Basal startle reactivity was enhanced by 8-OH-DPAT in sham-lesioned rats but not in 5,7-DHT-lesioned rats. In Experiment 2, a second method for depleting 5-HT was used. The tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA) also disrupted PPI without altering basal startle reactivity. Again, 8-OH-DPAT disrupted PPI in control animals; this effect was not altered in PCPA-treated rats but the increase in basal startle reactivity induced by 8-OH-DPAT was not observed in PCPA-treated rats. Taken together with the results of previous experiments involving drugs that enhance 5-HT neurotransmission it appears that both increases and decreases in 5-HT activity disrupt PPI.
    [Abstract] [Full Text] [Related] [New Search]