These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Standardized testing of bone implant surfaces with an osteoblast cell culture cyste. III. PVD hard coatings and Ti6Al4V]. Author: Steinert A, Hendrich C, Merklein F, Rader CP, Schütze N, Thull R, Eulert J. Journal: Biomed Tech (Berl); 2000 Dec; 45(12):349-55. PubMed ID: 11194641. Abstract: The effect of titanium-based PVD coatings and a titanium alloy on the proliferation and differentiation of osteoblasts was investigated using a standardised cell culture system. Human fetal osteoblasts (hFOB 1.19) were cultured on titanium-niobium-nitride ([Ti,Nb]N), titanium-niobium-oxy-nitride coatings ([Ti,Nb]ON) and titanium-aluminium-vanadium alloy (Ti6Al4V) for 17 days. Cell culture polystyrene (PS) was used as reference. For the assessment of proliferation, the numbers and viability of the cells were determined, while alkaline phosphatase activity, collagen I and osteocalcin synthesis served as differentiation parameters. On the basis of the cell culture experiments, a cytotoxic effect of the materials can be excluded. In comparison with the other test surfaces, [Ti,Nb]N showed greater cell proliferation. The [Ti,Nb]N coating was associated with the highest level of osteocalcin production, while all other differentiation parameters were identical on all three surfaces. The test system described reveals the influence of PVD coatings on the osteoblast differentiation cycle. The higher oxygen content of the [Ti,Nb]ON surface does not appear to have any positive impact on cell proliferation. The excellent biocompatibility of the PVD coatings is confirmed by in vivo findings. The possible use of these materials in the fields of osteosynthesis and articular surfaces is still under discussion.[Abstract] [Full Text] [Related] [New Search]