These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The OsO4F-, OsO4F2(2)-, and OsO3F3- anions, their study by vibrational and NMR spectroscopy and density functional theory calculations, and the X-ray crystal structures of [N(CH3)4][OsO4F] and [N(CH3)4][OsO3F3]. Author: Gerken M, Dixon DA, Schrobilgen GJ. Journal: Inorg Chem; 2000 Sep 18; 39(19):4244-55. PubMed ID: 11196919. Abstract: The fluoride ion acceptor properties of OsO4 and OsO3F2 were investigated. The salts [N(CH3)4][OsO4F] and [N(CH3)4]2[OsO4F2] were prepared by the reactions of OsO4 with stoichiometric amounts of [N(CH3)4][F] in CH3CN solvent. The salts [N(CH3)4][OsO3F3] and [NO][OsO3F3] were prepared by the reactions of OsO3F2 with a stoichiometric amount of [N(CH3)4][F] in CH3CN solvent and with excess NOF, respectively. The OsO4F- anion was fully structurally characterized in the solid state by vibrational spectroscopy and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO4F]: Abm2, a = 7.017(1) A, b = 11.401(2) A, c = 10.925(2) A, V = 874.1(3) A3, Z = 4, and R = 0.0282 at -50 degrees C. The cis-OsO4F2(2-) anion was characterized in the solid state by vibrational spectroscopy, and previous claims regarding the cis-OsO4F2(2-) anion are shown to be erroneous. The fac-OsO3F3- anion was fully structurally characterized in CH3CN solution by 19F NMR spectroscopy and in the solid state by vibrational spectroscopy of its N(CH3)4+ and NO+ salts and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO3F3]: C2/c, a = 16.347(4) A, b = 13.475(3) A, c = 11.436(3) A, beta = 134.128(4) degrees, V = 1808.1(7) A3, Z = 8, and R = 0.0614 at -117 degrees C. The geometrical parameters and vibrational frequencies of OsO4F-, cis-OsO4F2(2-), monomeric OsO3F2, and fac-OsO3F3- and the fluoride affinities of OsO4 and monomeric OsO3F2 were calculated using density functional theory methods.[Abstract] [Full Text] [Related] [New Search]