These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of individually ventilated cage systems for laboratory rodents: cage environment and animal health aspects. Author: Höglund AU, Renström A. Journal: Lab Anim; 2001 Jan; 35(1):51-7. PubMed ID: 11201288. Abstract: The use of individually ventilated cage (IVC) systems has become an attractive housing regime of laboratory rodents. The benefits of IVC systems are, reportedly, a high degree of containment combined with relative ease of handling, and a high degree of protection from allergenes. In the present study we tested whether two IVC systems (BioZone VentiRack, IVC1 and Techniplast SealSafe, IVC2S), in which we held mature male NMRI mice, were constructed to maintain a constant differential pressure, positive or negative, during a prolonged period of time. We also measured ammonia (NH3) concentrations after about 2 weeks of use, and CO2 build-up during a 60 min simulated power failure situation. In addition, animal weight development and bite-wound frequency were recorded (Renström et al. 2000). From the present study it is concluded that the IVC1 air handling system provides a more uniform and balanced differential pressure than the IVC2S. Both systems effectively scavenge NH3 when bedding material is not soaked by urine. Although the IVCs are dependent on the continual function of the fans to work properly, it seems unlikely that CO2 concentrations increase to hazardous levels, as a result of a one hour power failure, with the type of cages used in this study. Differences in weight development and bite-wound occurrence were noted between the two IVC systems. Causes for these differences could not be established and need more investigation.[Abstract] [Full Text] [Related] [New Search]