These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of depth of dentin demineralization on bond strengths and morphology of the hybrid layer.
    Author: Perdigão J, May KN, Wilder AD, Lopes M.
    Journal: Oper Dent; 2000; 25(3):186-94. PubMed ID: 11203815.
    Abstract:
    Previous studies have shown that different phosphoric acid-based etchants do not penetrate intertubular dentin to the same depth. The purpose of this study was to determine the effect of different phosphoric acid-based conditioners on dentin shear bond strengths of three one-bottle bonding systems and to evaluate the corresponding interfacial ultramorphology. The null hypothesis to be tested was that no correlation could be established between the depth of intertubular demineralization and dentin shear bond strengths. The labial surface of 90 bovine incisors was polished to expose middle dentin. The specimens were randomly assigned to three one-bottle adhesive systems (n = 30): OptiBond SOLO, Permaquick PQ1, and Single Bond. For each adhesive system the specimens were divided into three subgroups of different silica-thickened etching gels (n = 10): 37.5% phosphoric acid gel (Kerr Gel Etchant), 35% phosphoric acid gel (Ultraetch), and 35% phosphoric acid gel (Scotchbond Etching Gel). After 24 hours in water at 37 degrees C, the specimens were thermocycled for 500 cycles in baths kept at 5 degrees C and 55 degrees C and the shear bond strengths measured. The data were analyzed with one-way and two-way ANOVA. Further, the adhesives were applied to 800 microns-thick bovine dentin disks (two per subgroup), which were restored with a low-viscosity composite resin. Six small dentin/resin sticks with a cross-section of 1.0 mm x 1.0 mm were obtained from each bonded disk. They were then decalcified in a buffered solution of EDTA, fixed, stained, and sectioned in 90 nanometer-thick slices to observe under the Transmission Electron Microscope (TEM). The mean shear bond strengths were not statistically different at a confidence level of 95%. When the means were pooled for dentin adhesive and for etching gel, the number of cohesive failures was greater for Permaquick PQ1 and for Ultraetch, respectively. Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths. The ultramorphological observation showed that all materials penetrated the dentin and formed a hybrid layer, regardless of the etching gel used.
    [Abstract] [Full Text] [Related] [New Search]