These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction of castration and photoperiod in the regulation of hypophyseal and serum gonadotropin levels in male golden hamsters. Author: Turek FW, Elliott JA, Alvis JD, Menaker M. Journal: Endocrinology; 1975 Apr; 96(4):854-60. PubMed ID: 1120474. Abstract: Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured in intact and castrate adult male hamsters maintained on photostimulatory (LD 14:10) and non-photostimulatory (LD 6:18) light:dark cycles to assess the interaction of photic stimuli and gonadal hormones on pituitary gonadotropin release. Immunoreactive serum LH and FSH levels increased 1.6- and 8-fold respectively, within 3 days after photostimulated hamsters were castrated. In contrast, castration failed to alter serum LH concentration and had only a slight, if any, effect on FSH concentration in hamsters exposed to nonstimulatory photoperiods that induced testicular atrophy. In a second experiment, male hamsters previously maintained on LD 14:10 were castrated, transferred with intact animals to LD 6:18, and killed periodically over 60 days. In intact animals, pituitary content and serum levels of LH and FSH declined substantially during exposure to the non-stimulatory LD 6:18 cycle. In castrated animals, serum LH and FSH levels which had increased 2- and 8-fold in response to the castration eventually declined to about the levels found in the intact initial control animals. In contrast to serum gonadotropins, the increased hypophyseal content of LH and FSH following castration was not reduced during exposure to LD 6:18. Exposure to nonstimulatory photoperiods does not alter the increased hypophyseal LH and FSH content observed after castration. However, our results indicate that exposure to short days renders the hypothalamic-hypophyseal neuroendocrine system governing gonadotropin release relatively insensitive to gonadal steroid hormone feedback.[Abstract] [Full Text] [Related] [New Search]