These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Author: Nikitina EY, Clark JI, Van Beynen J, Chada S, Virmani AK, Carbone DP, Gabrilovich DI. Journal: Clin Cancer Res; 2001 Jan; 7(1):127-35. PubMed ID: 11205900. Abstract: Accumulation of wild-type or mutant p53 protein occurs in approximately 50% of human malignancies. This overexpression may generate antigenic epitopes recognized by CTLs. Because normal cells have undetectable levels of p53, these CTLs are likely to be tumor specific. Here, for the first time, we test the hypothesis that full-length wild-type p53 protein can be used for generation of an immune response against tumor cells with p53 overexpression. T cells obtained from nine HLA-A2-positive cancer patients and three HLA-A2-positive healthy individuals were stimulated twice with dendritic cells (DCs) transduced with an adenovirus wild-type p53 (Ad-p53) construct. Significant cytotoxicity was detected against HLA-A2-positive tumor cells with accumulation of mutant or wild-type p53 but not against HLA-A2-positive tumor cells with normal (undetectable) levels of p53 or against HLA-A2-negative tumor cells. This response was specific and mediated by CD8+ CTLs. These CTLs recognized HLA-A2-positive tumor cells expressing normal levels of p53 protein after their transduction with Ad-p53 but not with control adenovirus. Stimulation of T cells with Ad-p53-transduced DCs resulted in generation of CTLs specific for p53-derived peptide. These data demonstrate that DCs transduced with the wild-type p53 gene were able to induce a specific antitumor immune response. This offers a new promising approach to immunotherapy of cancer.[Abstract] [Full Text] [Related] [New Search]