These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A. Author: Westfall MV, Turner I, Albayya FP, Metzger JM. Journal: Am J Physiol Cell Physiol; 2001 Feb; 280(2):C324-32. PubMed ID: 11208528. Abstract: Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contrast, PKA did not influence Ca2+-activated tension in myocytes expressing the slow skeletal isoform of TnI or a chimera (N-slow/card-C TnI), which lack the unique phosphorylatable amino terminal extension found in cTnI. PKA-mediated phosphorylation of a second TnI chimera, N-card/slow-C TnI, which has the amino terminal region of cTnI, caused a decrease in the Ca2+ sensitivity of tension comparable in magnitude to control myocytes. Based on these results, we propose the amino terminal region shared by cTnI and N-card/slow-C TnI plays a central role in determining the magnitude of the PKA-mediated shift in myofilament Ca2+ sensitivity, independent of the isoform-specific functional domains previously defined within the carboxyl terminal backbone of TnI. Interestingly, exposure of permeabilized myocytes to acidic pH after PKA-mediated phosphorylation of cTnI resulted in an additive decrease in myofilament Ca2+ sensitivity. The isoform-specific, pH-sensitive region within TnI lies in the carboxyl terminus of TnI, and the additive response provides further evidence for the presence of a separate domain that directly transduces the PKA phosphorylation signal.[Abstract] [Full Text] [Related] [New Search]