These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na(+)-dependent fluid absorption in intact perfused rat colonic crypts.
    Author: Geibel JP, Rajendran VM, Binder HJ.
    Journal: Gastroenterology; 2001 Jan; 120(1):144-50. PubMed ID: 11208723.
    Abstract:
    BACKGROUND & AIMS: The traditional paradigm of fluid movement in the mammalian colon is that fluid absorption and secretion are present in surface and crypt cells, respectively. We have recently demonstrated Na(+)-dependent fluid absorption in isolated crypts that are devoid of neurohumoral stimulation. We now explore the mechanism of Na(+)-dependent fluid absorption in isolated rat colonic crypts. METHODS: Net fluid absorption was determined using microperfusion techniques and methoxy[(3)H]inulin with ion substitutions and transport inhibitors. RESULTS: Net fluid absorption was reduced but not abolished by substitution of either N-methyl-D-glucamine- Cl(-) or tetramethylammonium for Na(+) and by lumen addition of 5-ethylisopropyl amiloride, an amiloride analogue that selectively inhibits Na(+)-H(+) exchange. Net fluid absorption was also dependent on lumen Cl(-) because removal of lumen Cl(-) significantly (P < 0.001) reduced net fluid absorption. DIDS at 100 micromol/L, a concentration at which DIDS is an anion exchange inhibitor, minimally reduced net fluid absorption (P < 0.05). In contrast, either 500 micromol/L DIDS, a concentration at which DIDS is known to act as a Cl(-) channel blocker, or 10 micromol/L NPPB, a Cl(-) channel blocker, both substantially inhibited net fluid absorption (P < 0.001). Finally, both the removal of bath Cl(-) and addition of bath bumetanide, an inhibitor of Na-K-2Cl cotransport and Cl(-) secretion, resulted in a significant increase in net fluid absorption. CONCLUSIONS: (1) Net Na(+)-dependent net fluid absorption in the isolated colonic crypt represents both a larger Na(+)-dependent absorptive process and a smaller secretory process; and (2) the absorptive process consists of a Na(+)-dependent, HCO(3)(-)-independent process and a Na(+)-independent, Cl(-)-dependent, HCO(3)(-)-dependent process. Fluid movement in situ represents these transport processes plus fluid secretion induced by neurohumoral stimulation.
    [Abstract] [Full Text] [Related] [New Search]