These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain. Author: Innis SM, de La Presa Owens S. Journal: J Nutr; 2001 Jan; 131(1):118-22. PubMed ID: 11208947. Abstract: The importance of maternal dietary fatty acids on arachidonic acid [AA; 20:4(n-6)] and docosahexaenoic acid [DHA; 22:6(n-3)] in fetal brain nerve growth cone membranes and monoaminergic neurotransmitters was investigated. Rats were fed purified diets containing 20 g/100 g safflower oil with 74.3% 18:2(n-6), 0.2% 18:3(n-3), soybean oil with 55.4% 18:2(n-6), 7.7% 18:3(n-3) or high fish oil with 24.6% 22:6(n-3) through gestation. Tissue for rats within a litter were pooled at birth, brain growth cone membranes prepared and phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) fatty acids quantified by gas-liquid chromatography. Dopamine, serotonin, and the metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxyindolacetic acid were quantified by HPLC. Growth cone membranes from offspring of rats fed safflower oil had significantly lower, and offspring of rats fed high 22:6(n-3) fish oil had significantly higher 22:6(n-3) in PE, PS and PI than the soybean oil group. The growth cone membrane PC, PE and PS 20:4(n-6) was significantly lower in the fish oil than in the soybean or safflower oil groups. Serotonin concentration was significantly higher in brain of offspring in the safflower oil compared with the soybean oil group. The newborn brain dopamine was inversely related to PE DHA and PS DHA (P < 0.001), but positively related to PC AA (P < 0.05). These studies show that maternal dietary fatty acids may alter fetal brain growth cone (n-6) and (n-3) fatty acids, and neurotransmitters involved in neurite extension, target finding and synaptogenesis. The functional importance, however, is not known at this time.[Abstract] [Full Text] [Related] [New Search]