These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Author: Löckinger A, Schütte H, Walmrath D, Seeger W, Grimminger F. Journal: Transplantation; 2001 Jan 27; 71(2):185-93. PubMed ID: 11213057. Abstract: BACKGROUND: Development of severe gas exchange abnormalities and respiratory failure is a major threat in lung transplantation. METHODS: We used a model of ischemia-reperfusion injury in buffer-perfused rabbit lungs, with gas exchange conditions being analyzed in detail by the multiple inert gas elimination technique. A total of 150 min of warm ischemia was performed, and anoxic ventilation and a positive intravascular pressure were maintained throughout the ischemic period. RESULTS: Reperfusion provoked a transient, mostly precapillary pulmonary artery pressure elevation and progressive lung edema formation attributable to increased capillary permeability. Severe ventilation-perfusion mismatch with predominance of shunt flow became apparent within minutes after onset of reperfusion. 5 min-aerosolization maneuvers for alveolar deposition of prostaglandin E1, the long-acting prostacyclin analogue iloprost or the nitric oxide donor agent sodium nitroprusside were undertaken at the onset of ischemia. All preaerosolized vasodilator agents markedly reduced the pulmonary artery pressure elevation and the leakage response upon reperfusion. Most impressively, maintenance of physiological ventilation-perfusion matching was achieved by these maneuvers, and the development of shunt flow was largely suppressed. CONCLUSIONS: Preischemic alveolar deposition of PGE1, iloprost, and sodium nitroprusside by aerosol technique is highly effective in conserving normal pulmonary hemodynamics, microvascular integrity, and physiological gas exchange conditions upon reperfusion. This approach may offer as new strategy for maintenace of pulmonary function in lung transplantation.[Abstract] [Full Text] [Related] [New Search]