These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Ultrastructure and elemental composition of frog bladder granular epithelial cells in normal state and upon stimulation of water transport].
    Author: Gorshkov AN, Korolev EV, Komissarchik IaIu.
    Journal: Tsitologiia; 2000; 42(12):1113-24. PubMed ID: 11213725.
    Abstract:
    Changes in the frog urinary bladder granular cell ultrastructure were analysed in parallel with those in element composition of these cells after induction of water transport across the urinary bladder wall. Two ultrastructural (ultrathin section and freeze-fracture) methods were used in addition to two methods of object preparation for electron microprobe analysis--freeze-drying and freeze-substitution. It has been shown that arginin-vasotocin stimulation of osmotic water flow across the urinary bladder wall causes certain morphological changes in the granular cells: decrease in electron density of the cytoplasm, depolymerization of the apical submembrane layer of actin microfilaments, increase in the number of sites of specific granules and apical membrane fusion, emergency of intramembrane particle aggregates in the apical membrane P-face. The quantitative electron microprobe analysis made it possible to reveal a statistically significant increase in sodium and calcium concentration and fall in that of potassium and chlorine in granular cells after water transport stimulation. A concentration gradient of sodium and potassium ions was seen to appear along the apical-basal axis in the cytoplasm of granular cells. Possible association between the obvious morphological transformations in granular cells and changes in their elemental composition has been discussed, in addition to some regulatory significance of calcium concentration increase in granular cells after arginin-vasotocin-induced osmotic water transport.
    [Abstract] [Full Text] [Related] [New Search]