These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transforming growth factor-beta(1) stimulates L-arginine transport and metabolism in vascular smooth muscle cells: role in polyamine and collagen synthesis. Author: Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AI. Journal: Circulation; 2001 Feb 27; 103(8):1121-7. PubMed ID: 11222476. Abstract: BACKGROUND: Transforming growth factor-beta(1) (TGF-beta(1)) contributes to arterial remodeling by stimulating vascular smooth muscle cell (VSMC) growth and collagen synthesis at sites of vascular injury. Because L-arginine is metabolized to growth-stimulatory polyamines and to the essential collagen precursor L-proline, we examined whether TGF-beta(1) regulates the transcellular transport and metabolism of L-arginine by VSMCs. METHODS AND RESULTS: TGF-beta(1) increased L-arginine uptake, and this was associated with a selective increase in cationic amino acid transporter-1 (CAT-1) mRNA. In addition, TGF-beta(1) stimulated L-arginine metabolism by inducing arginase I mRNA and arginase activity. TGF-beta(1) also stimulated L-ornithine catabolism by elevating ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) activity. TGF-beta(1) markedly increased the capacity of VSMCs to generate the polyamine putrescine and L-proline from extracellular L-arginine. The TGF-beta(1)-mediated increase in putrescine and L-proline production was reversed by methyl-L-arginine, a competitive inhibitor of cationic amino acid transport, or by hydroxy-L-arginine, an arginase inhibitor. Furthermore, the formation of putrescine was inhibited by the ODC inhibitor alpha-difluoromethylornithine, and L-proline generation was blocked by the OAT inhibitor L-canaline. L-Canaline also inhibited TGF-beta(1)-stimulated type I collagen synthesis. CONCLUSIONS: These results demonstrate that TGF-beta(1) stimulates polyamine and L-proline synthesis by inducing the genes that regulate the transport and metabolism of L-arginine. In addition, they show that TGF-beta(1)-stimulated collagen production is dependent on L-proline formation. The ability of TGF-beta(1) to upregulate L-arginine transport and direct its metabolism to polyamines and L-proline may contribute to arterial remodeling at sites of vascular damage.[Abstract] [Full Text] [Related] [New Search]