These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Norepinephrine reuptake is impaired in skeletal muscle of hypertensive rats in vivo. Author: Cabassi A, Vinci S, Quartieri F, Moschini L, Borghetti A. Journal: Hypertension; 2001 Feb; 37(2 Pt 2):698-702. PubMed ID: 11230359. Abstract: Certain forms of experimental hypertension are characterized by organ-specific alterations of catecholaminergic pathways. The purpose of this study was to evaluate, in the same awake and freely moving normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) before and after the development of arterial hypertension, the norepinephrine (NE) turnover and, in particular, the neuronal NE reuptake activity that ends its effects once released from nerve terminals, in subcutaneous adipose tissue and in skeletal muscle, whose sympathetic efferents are respectively independent or dependent from baroreflexes. Plasma and tissue interstitial NE and 3,4-dihydroxyphenylethylene glycol (DHPG), its major deaminated metabolite, were measured before and after blockade of NE reuptake by tissue perfusion of desipramine through microdialysis probes. Arterial pressure and plasma NE in SHR were similar to those in WKY at 5 weeks of age but increased at 16 weeks of age. In contrast, plasma DHPG was already higher in young SHR. Basal interstitial NE and DHPG were increased in both tissues of young and old SHR compared with age-matched WKY. Desipramine induced a higher rise of interstitial NE in SHR of both ages, with a lesser increase in the skeletal muscle of old compared with young SHR. These results indicate an increased NE turnover in prehypertensive and hypertensive SHR in both baroreflex-dependent and -independent tissues, not shown by plasma NE levels in young SHR. In the skeletal muscle, where sympathetic efferents are baroreflex dependent, the reduced interstitial NE reuptake contributes to the higher availability of interstitial NE for postsynaptic effects in old SHR.[Abstract] [Full Text] [Related] [New Search]