These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a novel inhibitor of LPS-induced TNF-alpha production with antiproliferative activity in monocyte/macrophages. Author: Nagahira A, Nagahira K, Murafuji H, Abe K, Magota K, Matsui M, Oikawa S. Journal: Biochem Biophys Res Commun; 2001 Mar 09; 281(4):1030-6. PubMed ID: 11237767. Abstract: An isoquinoline derivative, 5-methyl-7,8-dimethoxy-1-phenylpyrazolo[5,4-c]isoquinoline (compound 1), was identified as a novel inhibitor of LPS-induced TNF-alpha production by cell-based screening. Compound 1 suppressed LPS-induced TNF-alpha production in RAW264.7 cells and murine peritoneal macrophages in a dose-dependent manner similar to SB203580, known as a specific inhibitor of p38 MAPK. It also inhibited an LPS-induced increase in serum TNF-alpha in a mouse endotoxic shock model with an ED(50) of approximately 10 mg/kg. Compound 1 had little effect on the incorporation of [3H]-leucine into the cells, while it suppressed LPS-induced TNF-alpha mRNA levels in RAW264.7 cells. The results indicate that suppression of TNF-alpha production was not a result of nonspecific inhibition of de novo translation but was based on the decreased TNF-alpha mRNA levels. The in vitro kinase assay revealed that compound 1 did not strongly inhibit p38 MAPK activity, its potency being much lower than that of SB203580, suggesting that the TNF-alpha-suppressive action of compound 1 cannot be attributed to the inhibition of p38 MAPK. Furthermore, in contrast to SB203580, it significantly inhibited the growth of RAW264.7 and THP-1 cells in a cytostatic manner. Compound 1 is likely to have antiinflammatory and antiproliferative effects by acting on some molecule other than p38 MAPK that contributes to both LPS-induced TNF-alpha production and the cell growth of monocyte/macrophages.[Abstract] [Full Text] [Related] [New Search]