These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling.
    Author: Morgan MA, Dolp O, Reuter CW.
    Journal: Blood; 2001 Mar 15; 97(6):1823-34. PubMed ID: 11238126.
    Abstract:
    Disruption of the RAS-to-mitogen-activated protein kinase (MAPK/ERK) signaling pathway, either directly through activating RAS gene mutations or indirectly through other genetic aberrations, plays an important role in the molecular pathogenesis of myeloid leukemias. Constitutive activation of ERK-1/2 and MEK-1/2, which elicit oncogenic transformation in fibroblasts, has recently been observed in acute myeloid leukemias (AML). In this study, the activation of the RAS-to-MAPK cascade in 14 AML and 5 chronic myeloid leukemia (CML) cell lines is examined and correlated with the effects of a panel of 9 RAS signaling inhibitors on cell viability, colony formation, cell-cycle progression, and induction of apoptosis. Activation of MEK, ERK, and the transcription factors CREB-1, ATF-1, and c-Myc is demonstrated in the majority of the cell lines (9 of 14 AML and 2 of 5 CML cell lines). Although activation of the ERK cascade did not always correlate with the presence of activating RAS mutations or BCR-Abl, it is linked to the G0/G1 and the G2/M phase of the cell cycle. In contrast to most inhibitors (eg, B581, Cys-4-Abs-Met, FPT-2, FTI-276, and FTS), a significant growth inhibition was only observed for FTI-277 (19 of 19), FPT-3 (10 of 19), and the MEK inhibitors U0126 (19 of 19) and PD098059 (8 of 19). Treatment of NB-4 cells with FTI-277 primarily resulted in a G2/M block, whereas treatment with FPT-3 and U0126 led to induction of apoptosis. FTI-277 revealed strong toxicity toward normal purified CD34+ cells. The results suggest differences in the mechanisms of action and support a potential therapeutic usefulness of these inhibitors in the treatment of myeloid leukemias.
    [Abstract] [Full Text] [Related] [New Search]