These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses.
    Author: Means TK, Jones BW, Schromm AB, Shurtleff BA, Smith JA, Keane J, Golenbock DT, Vogel SN, Fenton MJ.
    Journal: J Immunol; 2001 Mar 15; 166(6):4074-82. PubMed ID: 11238656.
    Abstract:
    We previously showed that viable Mycobacterium tuberculosis (Mtb) bacilli contain distinct ligands that activate cells via the mammalian Toll-like receptor (TLR) proteins TLR2 and TLR4. We now demonstrate that expression of a dominant negative TLR2 or TLR4 proteins in RAW 264.7 macrophages partially blocked Mtb-induced NF-kappa B activation. Coexpression of both dominant negative proteins blocked virtually all Mtb-induced NF-kappa B activation. The role of the TLR4 coreceptor MD-2 was also examined. Unlike LPS, Mtb-induced macrophage activation was not augmented by overexpression of ectopic MD-2. Moreover, cells expressing an LPS-unresponsive MD-2 mutant responded normally to Mtb. We also observed that the lipid A-like antagonist E5531 specifically inhibited TLR4-dependent Mtb-induced cellular responses. E5531 could substantially block LPS- and Mtb-induced TNF-alpha production in both RAW 264.7 cells and primary human alveolar macrophages (AM phi). E5531 inhibited Mtb-induced AM phi apoptosis in vitro, an effect that was a consequence of the inhibition of TNF-alpha production by E5531. In contrast, E5531 did not inhibit Mtb-induced NO production in RAW 264.7 cells and AM phi. Mtb-stimulated peritoneal macrophages from TLR2- and TLR4-deficient animals produced similar amounts of NO compared with control animals, demonstrating that these TLR proteins are not required for Mtb-induced NO production. Lastly, we demonstrated that a dominant negative MyD88 mutant could block Mtb-induced activation of the TNF-alpha promoter, but not the inducible NO synthase promoter, in murine macrophages. Together, these data suggest that Mtb-induced TNF-alpha production is largely dependent on TLR signaling. In contrast, Mtb-induced NO production may be either TLR independent or mediated by TLR proteins in a MyD88-independent manner.
    [Abstract] [Full Text] [Related] [New Search]