These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Author: Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. Journal: Nature; 2001 Mar 01; 410(6824):112-6. PubMed ID: 11242052. Abstract: X-linked inhibitor-of-apoptosis protein (XIAP) interacts with caspase-9 and inhibits its activity, whereas Smac (also known as DIABLO) relieves this inhibition through interaction with XIAP. Here we show that XIAP associates with the active caspase-9-Apaf-1 holoenzyme complex through binding to the amino terminus of the linker peptide on the small subunit of caspase-9, which becomes exposed after proteolytic processing of procaspase-9 at Asp315. Supporting this observation, point mutations that abrogate the proteolytic processing but not the catalytic activity of caspase-9, or deletion of the linker peptide, prevented caspase-9 association with XIAP and its concomitant inhibition. We note that the N-terminal four residues of caspase-9 linker peptide share significant homology with the N-terminal tetra-peptide in mature Smac and in the Drosophila proteins Hid/Grim/Reaper, defining a conserved class of IAP-binding motifs. Consistent with this finding, binding of the caspase-9 linker peptide and Smac to the BIR3 domain of XIAP is mutually exclusive, suggesting that Smac potentiates caspase-9 activity by disrupting the interaction of the linker peptide of caspase-9 with BIR3. Our studies reveal a mechanism in which binding to the BIR3 domain by two conserved peptides, one from Smac and the other one from caspase-9, has opposing effects on caspase activity and apoptosis.[Abstract] [Full Text] [Related] [New Search]