These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues.
    Author: Sheng WQ, Hisaoka M, Okamoto S, Tanaka A, Meis-Kindblom JM, Kindblom LG, Ishida T, Nojima T, Hashimoto H.
    Journal: Am J Clin Pathol; 2001 Mar; 115(3):348-55. PubMed ID: 11242790.
    Abstract:
    Congenital-infantile fibrosarcoma (CIFS) is a relatively indolent sarcoma that should be distinguished from more aggressive spindle cell sarcomas of childhood. CIFSs have been found to have a novel recurrent reciprocal translocation t(12;15)(p13;q25) resulting in the gene fusion ETV6-NTRK3 (ETS variant gene 6; neurotrophic tyrosine kinase receptor type 3). We studied immunohistochemical expression of NTRK3, and conducted a reverse transcription-polymerase chain reaction (RT-PCR) assay to detect the ETV6-NTRK3 fusion transcripts using archival formalin-fixed paraffin-embedded tissues from 10 CIFSs. Thirty-eight other spindle cell tumors were included as controls. The ETV6-NTRK3 fusion transcripts were identified in 7 (70%) of 10 CIFSs. Nucleotide sequence analysis showed that the fusion occurred between ETV6 exon 5 and NTRK3 exon 13. The 38 control tumors were negative for the fusion transcript. Immunohistochemically, CIFSs consistently expressed NTRK3. But the expression of NTRK3 also was observed in 22 of 38 control tumors. These results show the diagnostic usefulness of RT-PCR methods to detect ETV6-NTRK3 fusion transcripts in archival formalin-fixed paraffin-embedded tissue and the important role of NTRK3 in the development of CIFS, despite its being a protein of little importance in differential diagnosis.
    [Abstract] [Full Text] [Related] [New Search]