These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic and pharmacological analyses of involvement of Src-family, Syk and Btk tyrosine kinases in platelet shape change. Src-kinases mediate integrin alphaIIb beta3 inside-out signalling during shape change.
    Author: Bauer M, Maschberger P, Quek L, Briddon SJ, Dash D, Weiss M, Watson SP, Siess W.
    Journal: Thromb Haemost; 2001 Feb; 85(2):331-40. PubMed ID: 11246557.
    Abstract:
    Platelet shape change was found to be associated with an increase in protein tyrosine phosphorylation upon stimulation of thrombin-, ADP- and thromboxane A2-G-protein coupled receptors in human platelets and thromboxane A2 receptors in mouse platelets. By using PP1 and PD173956, two structurally unrelated specific inhibitors of Src-family tyrosine kinases, and mouse platelets deficient in the Src-kinase Fyn or Lyn, we show that Src-family kinases cause the increase in protein tyrosine phosphorylation. We further detected that the non-Src tyrosine kinase Syk was activated during shape change in a manner dependent on Src-family kinaseactivation. The pharmacological experiments and the studies on Fyn-, Lyn- and Syk-deficient mouse platelets showed that neither Src-family kinases nor Syk are functionally involved in shape change. Also human platelets deficient of the tyrosine kinase Btk showed a normal shape change. Binding of PAC-1 that recognizes activated integrin alphaIIb beta3 complexes on the platelet surface was enhanced during shape change and blocked by inhibition of Src-kinases. We conclude that the activation of Src-kinases and the subsequent Syk stimulation upon activation of G-protein coupled receptors are not involved in the cytoskeletal changes underlying shape change of human and mouse platelets, but that the stimulation of this evolutionary conserved pathway leads to integrin alphaIIb beta3 exposure during shape change.
    [Abstract] [Full Text] [Related] [New Search]