These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium ion-translocating decarboxylases. Author: Buckel W. Journal: Biochim Biophys Acta; 2001 May 01; 1505(1):15-27. PubMed ID: 11248185. Abstract: The review is concerned with three Na(+)-dependent biotin-containing decarboxylases, which catalyse the substitution of CO(2) by H(+) with retention of configuration (DeltaG degrees '=-30 kJ/mol): oxaloacetate decarboxylase from enterobacteria, methylmalonyl-CoA decarboxylase from Veillonella parvula and Propiogenium modestum, and glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. The enzymes represent complexes of four functional domains or subunits, a carboxytransferase, a mobile alanine- and proline-rich biotin carrier, a 9-11 membrane-spanning helix-containing Na(+)-dependent carboxybiotin decarboxylase and a membrane anchor. In the first catalytic step the carboxyl group of the substrate is converted to a kinetically activated carboxylate in N-carboxybiotin. After swing-over to the decarboxylase, an electrochemical Na(+) gradient is generated; the free energy of the decarboxylation is used to translocate 1-2 Na(+) from the inside to the outside, whereas the proton comes from the outside. At high [Na(+)], however, the decarboxylases appear to catalyse a mere Na(+)/Na(+) exchange. This finding has implications for the life of P. modestum in sea water, which relies on the synthesis of ATP via Delta(mu)Na(+) generated by decarboxylation. In many sequenced genomes from Bacteria and Archaea homologues of the carboxybiotin decarboxylase from A. fermentans with up to 80% sequence identity have been detected.[Abstract] [Full Text] [Related] [New Search]