These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism of protection against influenza A virus by DNA vaccine encoding the hemagglutinin gene. Author: Operschall E, Pavlovic J, Nawrath M, Mölling K. Journal: Intervirology; 2000; 43(4-6):322-30. PubMed ID: 11251388. Abstract: Influenza A virus with its two major antigenic surface proteins hemagglutinin (HA) and neuraminidase (NA) is a widely used model to study DNA immunizations in mice and other animals. Natural protection against influenza A virus infection is mediated by antibodies, which mostly are not protective against antigenic shift or drift variants of the original virus. Therefore, it would be a major task to induce a protective cellular immune response to more conserved proteins or epitopes. Injection of plasmid encoding a viral antigen is known to induce cellular as well as humoral immunity. In this study we investigate the mechanism of protection after intramuscular vaccination of C57Bl/6 mice with a DNA vaccine encoding HA of influenza A/PR/8/34. After a single injection, only a small percentage of mice survive the lethal challenge with homologous virus. The amount of protection can be doubled by applying a booster injection. Furthermore, by coinjection of plasmids encoding cytokines GM-CSF and IL-12, respectively, nearly all of the mice are protected. Mice with specific defects in the cellular immune response [perforin knockout (P-/-) mice] and in the humoral immune response [IgD/IgM knockout (muMT) mice], respectively, have been immunized with HA DNA with or without cytokine DNA. Protection could only be induced in P-/- mice, whereas muMT mice succumbed to the infection. Moreover, when muMT mice were infected with only 0.75 x50% lethal dose they died all the same, whereby mice that had been depleted of CD8+ T cells before infection showed an even greater progression of illness. Altogether these results demonstrate that antibodies mediate protection after immunization with plasmid coding for HA of influenza A virus, and that booster immunizations and coinjection of plasmids encoding GM-CSF or IL-12 can improve this protection.[Abstract] [Full Text] [Related] [New Search]