These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Supplementation of postmenopausal women with fish oil does not increase overall oxidation of LDL ex vivo compared to dietary oils rich in oleate and linoleate. Author: Higdon JV, Du SH, Lee YS, Wu T, Wander RC. Journal: J Lipid Res; 2001 Mar; 42(3):407-18. PubMed ID: 11254753. Abstract: Although replacement of dietary saturated fat with monounsaturated and polyunsaturated fatty acids (MUFA and PUFA) has been advocated for the reduction of cardiovascular disease risk, diets high in PUFA could increase low density lipoprotein (LDL) susceptibility to oxidation, potentially contributing to the pathology of atherosclerosis. To investigate this possibility, 15 postmenopausal women in a blinded crossover trial consumed 15 g of sunflower oil (SU) providing 12.3 g/day of oleate, safflower oil (SA) providing 10.5 g/day of linoleate, and fish oil (FO) providing 2.0 g/day of eicosapentaenoate (EPA) and 1.4 g/day of docosahexaenoate (DHA). During CuSO(4)-mediated oxidation, LDL was depleted of alpha-tocopherol more rapidly after FO supplementation than after supplementation with SU (P = 0.0001) and SA (P = 0.05). In LDL phospholipid and cholesteryl ester fractions, loss of n-3 PUFA was greater and loss of n-6 PUFA less after FO supplementation than after SU and SA supplementation (P < 0.05 for all), but loss of total PUFA did not differ. The lag phase for phosphatidylcholine hydroperoxide (PCOOH) formation was shorter after FO supplementation than after supplementation with SU (P = 0.0001) and SA (P = 0.006), whereas the lag phase for cholesteryl linoleate hydroperoxide (CE18:2OOH) formation was shorter after FO supplementation than after SU (P = 0.03) but not SA. In contrast, maximal rates of PCOOH and CE18:2OOH formation were lower after FO supplementation than after SA (P = 0.02 and 0.0001, respectively) and maximal concentrations of PCOOH and CE18:2OOH were lower after FO supplementation than after SA (P = 0.03 and 0.0006, respectively). Taken together, our results suggest that FO supplementation does not increase the overall oxidation of LDL ex vivo, especially when compared with SA supplementation. Consequently, health benefits related to increased fish consumption may not be offset by increased LDL oxidative susceptibility.-- Higdon, J. V., S. H. Du, Y. S. Lee, T. Wu, and R. C. Wander. Supplementation of postmenopausal women with fish oil does not increase overall oxidation of LDL ex vivo compared to dietary oils rich in oleate and linoleate. J. Lipid Res. 2001. 42: 407--418.[Abstract] [Full Text] [Related] [New Search]