These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium channel blockade in vascular smooth muscle cells: major hypotensive mechanism of S-petasin, a hypotensive sesquiterpene from Petasites formosanus. Author: Wang GJ, Shum AY, Lin YL, Liao JF, Wu XC, Ren J, Chen CF. Journal: J Pharmacol Exp Ther; 2001 Apr; 297(1):240-6. PubMed ID: 11259550. Abstract: In vivo and in vitro studies were carried out to examine the putative hypotensive actions of S-petasin, a sesquiterpene extracted from the medicinal plant Petasites formosanus. Intravenous S-petasin (0.1-1.5 mg/kg) in anesthetized rats produced a dose-dependent hypotensive effect. In isolated aortic ring, isometric contraction elicited by KCl or the L-type Ca2+ channel agonist Bay K 8644 was reduced by S-petasin (0.1-100 microM), an action not affected by the cyclooxygenase inhibitor indomethacin, nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine, guanylyl cyclase inhibitor methylene blue, or removal of vascular endothelium. Pretreatment with S-petasin for 10 min shifted the concentration-response curve for KCl (15-90 mM)-induced contraction to the right and reduced the maximal response. In Ca2+-depleted and high K+-depolarized aortic rings preincubation with S-petasin attenuated the Ca2+-induced contraction in a concentration-dependent manner, suggesting that S-petasin reduced Ca2+ influx into vascular smooth muscle cells (VSMCs). Moreover, in cultured VSMCs, whole-cell patch-clamp recording indicated that S-petasin (1-50 microM) inhibited the L-type voltage-dependent Ca2+ channel (VDCC) activities. Intracellular Ca2+ concentration ([Ca2+[(i)) estimation using the fluorescent probe 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid pentaacetoxymethyl ester indicated that S-petasin (10, 100 microM) suppressed the KCl-stimulated increase in ([Ca2+[(i)). Taken together, the results suggested that a direct Ca2+ antagonism of L-type VDCC in vascular smooth muscle may account, at least in part, for the hypotensive action of S-petasin.[Abstract] [Full Text] [Related] [New Search]