These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo efficacy in airway disease models of roflumilast, a novel orally active PDE4 inhibitor. Author: Bundschuh DS, Eltze M, Barsig J, Wollin L, Hatzelmann A, Beume R. Journal: J Pharmacol Exp Ther; 2001 Apr; 297(1):280-90. PubMed ID: 11259555. Abstract: We have investigated the bronchodilator and anti-inflammatory properties of roflumilast (3-cyclopropylmethoxy-4-difluoromethoxy-N-[3,5-dichloropyrid-4-yl]-benzamide), a novel, highly potent, and selective phosphodiesterase 4 (PDE4) inhibitor. Additionally, we compared the effects of roflumilast and its N-oxide, the primary metabolite in vivo, with those of the PDE4 inhibitors piclamilast, rolipram, and cilomilast. Roflumilast inhibited the ovalbumin-evoked contractions of tracheal chains prepared from sensitized guinea pigs (EC(50) = 2 x 10(-7) M) but showed no relaxant effect on tissues contracted spontaneously. In spasmogen-challenged rats and guinea pigs, intravenously administered roflumilast displayed bronchodilatory activity (ED(50) = 4.4 and 7.1 micromol/kg, respectively). Furthermore, roflumilast dose dependently attenuated allergen-induced bronchoconstriction in guinea pigs (ED(50) = 0.1 micromol/kg i.v.). Roflumilast given orally (ED(50) = 1.5 micromol/kg) showed equal potency to its N-oxide (ED(50) = 1.0 micromol/kg) but was superior to piclamilast (ED(50) = 8.3 micromol/kg), rolipram (ED(50) = 32.5 micromol/kg), and cilomilast (ED(50) = 52.2 micromol/kg) in suppressing allergen-induced early airway reactions. To assess the anti-inflammatory potential of orally administered roflumilast, antigen-induced cell infiltration, total protein, and TNFalpha concentration in bronchoalveolar lavage fluid of Brown Norway rats were determined. Roflumilast and its N-oxide equally inhibited eosinophilia (ED(50) = 2.7 and 2.5 micromol/kg, respectively), whereas the reference inhibitors displayed lower potency (ED(50) = 17-106 micromol/kg). Besides, orally administered roflumilast abrogated LPS-induced circulating TNFalpha in the rat (ED(50) = 0.3 micromol/kg), an effect shared by its N-oxide, with both molecules exhibiting 8-, 25-, and 310-fold superiority to piclamilast, rolipram, and cilomilast, respectively. These results, coupled with the in vitro effects of roflumilast on inflammatory cells, suggest that roflumilast represents a potential new drug for the treatment of asthma and chronic obstructive pulmonary disease.[Abstract] [Full Text] [Related] [New Search]