These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of guanosine 5'-[gamma-(35)S]thio-triphosphate binding through M(1) muscarinic receptors in transfected Chinese hamster ovary cell membranes; 1. Mathematical analysis of catalytic G protein activation.
    Author: Waelbroeck M.
    Journal: Mol Pharmacol; 2001 Apr; 59(4):875-85. PubMed ID: 11259633.
    Abstract:
    I analyzed in this work the effect of agonists and unlabeled guanyl nucleotides on [(35)S]GTP gamma S and [(3)H]NMS binding to transfected CHO cells expressing hM(1) muscarinic receptors. I was unable to explain my kinetic results by "traditional" (one-site, two-site, or two-step) bimolecular binding models. I therefore examined the equations that describe catalytic G protein activation. My results were fully consistent with the following interpretation: G protein-coupled receptors either interacted with GDP-bound G proteins and facilitated the GDP release or recognized empty G proteins, depending on the incubation conditions. The receptor-coupled empty G proteins (RG) then recognized GTP gamma S, and the occupied G protein (G) dissociated reversibly from the receptor. Agonists accelerated the GDP release from receptor-coupled G proteins and accelerated the G dissociation: both effects accelerated synergically the G protein-GTP gamma S association reaction in the presence of GDP. GTP gamma S-bound G proteins, G, competed efficiently with inactive (empty or GDP-bound) G proteins for receptor recognition, and were able, therefore, at low concentrations, to quench the [(35)S]GTP gamma S binding reaction.
    [Abstract] [Full Text] [Related] [New Search]