These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Further characterisation of a thromboembolic model of stroke in the rat. Author: Beech JS, Williams SC, Campbell CA, Bath PM, Parsons AA, Hunter AJ, Menon DK. Journal: Brain Res; 2001 Mar 23; 895(1-2):18-24. PubMed ID: 11259755. Abstract: We have used magnetic resonance imaging (MRI) techniques to characterise a rat model of thromboembolic stroke. The consequences of acute perfusion deficit associated with a middle cerebral artery occlusion (MCAo) by a newly formed thrombus was mapped by interrogation of the tissue oxygenation status using gradient echo methods and production of T2* maps. Final infarct size was subsequently assessed at 24-h post-ischaemia by histology with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Animals displayed an infarct volume of 178.7+/-84.2 mm(3) (mean+/-S.D.) with a large coefficient of variation (47%) and range of values (85.6--265.5 mm(3)). This variability provided us with an opportunity to assess the relationships between early imaging observations and eventual infarct size. For a single cerebral slice, at the centre of the MCA territory, a relationship between the area of reduced T2* at 1 and 2 h post MCAo correlated highly with final lesion area (Spearman rank correlation, r=0.98, P<0.01, n=9). Lesion volumes in the thromboembolic MCAo model were compared with a 120-min occlusion, 22-h reperfusion protocol using an intraluminal thread MCAo approach. For the thromboembolic model, the total lesion volume was found to be smaller (178.7+/-84.2 vs. 243.3+/-50.1 mm(3), mean+/-S.D., Student's t-test P=0.046) and showed a greater variability (coefficient of variations: 47% vs. 21%). These data underline the relative variability of this embolic model and provide important preliminary information regarding the value of early changes in T2* in predicting eventual infarct size.[Abstract] [Full Text] [Related] [New Search]