These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kinase-inactive G-protein-coupled receptor kinases are able to attenuate follicle-stimulating hormone-induced signaling.
    Author: Reiter E, Marion S, Robert F, Troispoux C, Boulay F, Guillou F, Crepieux P.
    Journal: Biochem Biophys Res Commun; 2001 Mar 23; 282(1):71-8. PubMed ID: 11263973.
    Abstract:
    Homologous desensitization of G-protein-coupled receptors (GPCR) is thought to occur in several steps: binding of G-protein-coupled receptor kinases (GRKs) to receptors, receptor phosphorylation, kinase dissociation, and finally binding of beta-arrestin to phosphorylated receptors and functional uncoupling of the associated Galpha protein. It has recently been reported that GRKs can inhibit Galphaq-mediated signaling in the absence of phosphorylation of some GPCRs. Whether or not comparable phosphorylation-independent effects are also possible with Galphas-coupled receptors remains unclear. In the present study, using the tightly Galphas-coupled FSR receptor (FSH-R) as a model, we observed inhibition of the cAMP-dependent signaling pathway using kinase-inactive mutants of GRK2, 5, and 6. These negative effects occur upstream of adenylyl cyclase activation and are likely independent of GRK interaction with G protein alpha or beta/gamma subunits. Moreover, we demonstrated that, when overexpressed in Cos 7 cells, mutated GRK2 associates with the FSH activated FSH-R. We hypothesize that phosphorylation-independent dampening of the FSH-R-associated signaling could be attributable to physical association between GRKs and the receptor, subsequently inhibiting G protein activation.
    [Abstract] [Full Text] [Related] [New Search]