These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane.
    Author: Miyata S, Matsushita O, Minami J, Katayama S, Shimamoto S, Okabe A.
    Journal: J Biol Chem; 2001 Apr 27; 276(17):13778-83. PubMed ID: 11278924.
    Abstract:
    Activation of Clostridium perfringens epsilon-protoxin by tryptic digestion is accompanied by removal of the 13 N-terminal and 22 C-terminal amino acid residues. In this study, we examined the toxicity of four constructs: an epsilon-protoxin derivative (PD), in which a factor Xa cleavage site was generated at the C-terminal trypsin-sensitive site; PD without the 13 N-terminal residues (DeltaN-PD); PD without the 23 C-terminal residues (DeltaC-PD); and PD without either the N- or C-terminal residues (DeltaNC-PD). A mouse lethality test showed that DeltaN-PD was inactive, as is PD, whereas DeltaC-PD and DeltaNC-PD were equally active. DeltaC-PD and DeltaNC-PD, but not the other constructs formed a large SDS-resistant complex in rat synaptosomal membranes as demonstrated by SDS-polyacrylamide gel electrophoresis. When DeltaNC-PD and DeltaC-PD, both labeled with (32)P and mixed in various ratios, were incubated with membranes, eight distinct high molecular weight bands corresponding to six heteropolymers and two homopolymers were detected on a SDS-polyacrylamide gel, indicating the active toxin forms a heptameric complex. These results indicate that C-terminal processing is responsible for activation of the toxin and that it is essential for its heptamerization within the membrane.
    [Abstract] [Full Text] [Related] [New Search]