These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative wear and wear debris under three different counterface conditions of crosslinked and non-crosslinked ultra high molecular weight polyethylene.
    Author: Endo MM, Barbour PS, Barton DC, Fisher J, Tipper JL, Ingham E, Stone MH.
    Journal: Biomed Mater Eng; 2001; 11(1):23-35. PubMed ID: 11281576.
    Abstract:
    The wear debris generated from ultra high molecular weight polyethylene (UHMWPE) have been recognised as one of the major causes of failure in total hip replacements (THR). It is essential to reduce the wear debris generated from UHMWPE acetabular cups in order to minimise this problem. Debris in the submicron size range is believed to have greater osteolytic potential. It is now known that crosslinked UHMWPE acetabular cups have reduced volumetric wear rates but little is known about the influence of crosslinking on the size and morphology of the wear debris. In this study, the wear of grade GUR 1020 crosslinked (vacuum gamma irradiated), GUR 1120 crosslinked (acetylene enhanced irradiated) and non cross linked (ethylene oxide sterilised) GUR 1020 UHMWPE was compared in multidirectional pin-on-plate wear tests under three different counterface conditions (smooth, isotropically rough and scratched counterfaces). Multidirectional motion was chosen because this motion was closer to the relative motion in the natural hip. From this study, better wear resistance of crosslinked UHMWPE compared with non-crosslinked UHMWPE was demonstrated for the smooth counterface conditions. However, in the rough and scratched counterface conditions, the vacuum gamma irradiated crosslinked material produced significantly higher wear rates than the non-crosslinked material. The analysis of the wear debris showed that the majority of the volume of the acetylene enhanced crosslinked UHMWPE wear debris was in the most biologically active size range (0.1 to 0.5 microm). In contrast, the non-crosslinked material and the vacuum gamma irradiated crosslinked material had a greater proportion of the volume of the debris in the larger size ranges which are less biologically active. This has important implications for its osteolytic potential.
    [Abstract] [Full Text] [Related] [New Search]