These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis, chemical properties, and biological evaluation of CC-1065 and duocarmycin analogues incorporating the 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa. Author: Boger DL, Hughes TV, Hedrick MP. Journal: J Org Chem; 2001 Apr 06; 66(7):2207-16. PubMed ID: 11281757. Abstract: The synthesis of 5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (C5-CO2Me-CBI), a substituted CBI derivative bearing a C5 methoxycarbonyl group, and its corresponding 5-hydroxymethyl derivative are described in efforts to establish substituent electronic effects on the agents' functional reactivity and the resulting effect this has on their rate of DNA alkylation. Resolution of an immediate C5-CO2Me-CBI precursor and its incorporation into both enantiomers of 16 and 17, analogues of the duocarmycins, are also detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-C5-CO2Me-CBI (12) revealed that the introduction of a C5 methyl ester modestly slowed the rate of solvolysis (1.8x, pH 3) without altering the inherent reaction regioselectivity (>20:1). The comparison of the X-ray structures of the N-CO2Me derivatives of C5-CO2Me-CBI and CBI revealed correlations with the reaction regioselectivity and the relative reactivity of the compounds. The latter correlated well with the less reactive C5-CO2Me-CBI exhibiting a shortened N2-C2a bond length (1.386 vs 1.390 A) and smaller chi1 dihedral angle (8.1 degrees vs 21.2 degrees ) indicative of greater vinylogous amide conjugation and was accompanied by a diminished (cross-conjugated) cyclopropane conjugation (shorter bond lengths). Establishment of the DNA alkyation properties revealed that C5-CO2Me-CBI-based agents retained the identical alkylation selectivity of the natural products. More importantly, the C5 methyl ester was found to decrease the rate (0.77x) of DNA alkylation relative to CBI, consistent with its inherent lower reactivity. These results indicate that the previously observed increase in the rate of DNA alkylation for C7-substituted CBI analogues including CCBI (7-cyano-CBI) is contrary to expectations based on their inherent reactivities. Unlike 17, in which the C5 methyl ester does not bind in the minor groove, the C7 substituent lies in the minor groove extending the rigid length of the agents, further enhancing the DNA binding-induced conformational change responsible for activation toward nucleophilic attack and catalysis of the DNA alkylation reaction.[Abstract] [Full Text] [Related] [New Search]