These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multivalent anti-CCR ribozymes for stem cell-based HIV type 1 gene therapy. Author: Bai J, Rossi J, Akkina R. Journal: AIDS Res Hum Retroviruses; 2001 Mar 20; 17(5):385-99. PubMed ID: 11282007. Abstract: HIV-1 infection of susceptible cells is mediated by the specific interaction of viral envelope glycoproteins with the cell surface CD4 receptor and a chemokine coreceptor, CCR5 or CXCR4. Individuals with a CCR5 genetic defect show resistance to HIV-1 infection, indicating that downregulation of CCR5 expression on target cells can prevent viral infection. In previous studies we demonstrated the utility of an anti-CCR5 ribozyme targeted to a single cleavage site in downregulating CCR5 expression and consequently providing resistance to viral infection. To improve on the level of downregulation we designed a construct containing an anti-CCR5 ribozyme heterotrimer (R5RbzTM) targeted to three different cleavage sites in CCR5 mRNA. In vitro tests showed that the anti-CCR5 ribozyme heterotrimer could effectively cleave the CCR5 RNA substrates to yield products of the expected sizes. This construct was introduced into various retroviral vectors for stable gene transduction. HOS.CD4/R5 cells stably transduced with this anti-CCR5 heterotrimer showed a marked reduction in the surface expression of CCR5 and a concomitant 70% reduction in macrophage-tropic viral infection. In addition, a retroviral vector containing the anti-CCR5 ribozyme heterotrimer and an anti-HIV-1 tat-rev ribozyme heterodimer was constructed. This construct also showed a similar inhibition of CCR5 surface expression and reduced infectability by the macrophage-tropic HIV-1 vector in HOS.CD4/R5 cells. The trimeric and multimeric ribozyme constructs were transduced into CD34+ hematopoietic progenitor cells to determine their effects on lineage-specific differentiation. We show that multivalent ribozyme gene-transduced hematopoietic progenitors differentiated normally into mature macrophages that bear CD14 and CD4 surface markers. Macrophages containing the transgenes expressed ribozymes, and showed resistance to M-tropic HIV-1 infection. These results provide strong support for the use of the trimeric anti-CCR5 ribozyme approach in a gene therapy setting for the treatment of HIV infection.[Abstract] [Full Text] [Related] [New Search]