These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure of the Fe-heme in the hemodimeric hemoglobin from Scapharca inaequivalvis and in the T721 mutant: an X-ray absorption spectroscopic study at low temperature.
    Author: Della Longa S, Gambacurta A, Bertollini A, Girasole M, Castellano AC, Ascoli F.
    Journal: Eur Biophys J; 2001; 29(8):559-68. PubMed ID: 11288830.
    Abstract:
    The Fe site structure in the recombinant wild-type and T721 mutant of the cooperative homodimeric hemoglobin (HbI) of the mollusc Scapharca itnaequivalvis has been investigated by measuring the Fe K-edge X-ray absorption near edge structure (XANES) spectra of their oxy, deoxy and carbonmonoxy derivatives, and the cryogenic photoproducts of the carbonmonoxy derivatives at T = 12 K. According to our results, the Fe site geometry in T72I HbI-CO is quite similar to that of human carbonmonoxy hemoglobin (HbA-CO), while in native HbI-CO it seems intermediate between that of HbA-CO and sperm whale MbCO. The XANES spectra of oxy and deoxy derivatives are similar to the homologous spectra of human HbA, except for T72I HbI, for which the absorption edge is blue-shifted (about + 1 eV) towards the spectrum of the oxy form. XANES spectra of the cryogenic photoproducts of HbA-CO (HbA*), HbI-CO (HbI*) and mutant HbI-CO (T72I HbI*) were acquired under continuous illumination at 12 K. The Fe-heme structures of the three photoproducts are similar; however, while in the case of HbA* and HbI* the data indicate incomplete structural relaxation of the Fe-heme towards its deoxy-like (T) form, the relaxation in T72I HbI* is almost completely towards the proposed "high affinity" Fe-heme structure of T72I HbI. This evidence suggests that minor tertiary restraints affect the Fe-heme dynamics of T72I HbI, corresponding to a reduction of the energy necessary for the T --> R structural transition, which can contribute to the observed dramatic enhancement in oxygen affinity of this hemoprotein, and the decreased cooperativity.
    [Abstract] [Full Text] [Related] [New Search]